Object localisation using the Generative Template of Features
نویسندگان
چکیده
We introduce the Generative Template of Features (GTF), a parts-based model for visual object category detection. The GTF consists of a number of parts, and for each part there is a corresponding spatial location distribution and a distribution over ‘visual words’ (clusters of invariant features). The performance of the GTF is evaluated for object localisation, and it is shown that such a relatively simple model can give state-of-the-art performance. We also demonstrate how a Houghtransform-like method for object localisation can be derived from the GTF model.
منابع مشابه
Sprite learning and object category recognition using invariant features
This thesis explores the use of invariant features for learning sprites from image sequences, and for recognising object categories in images. A popular framework for the interpretation of image sequences is the layers or sprite model of e.g. Wang and Adelson (1994), Irani et al. (1994). Jojic and Frey (2001) provide a generative probabilistic model framework for this task, but their algorithm ...
متن کاملOn a Connection between Object Localization with a Generative Template of Features and Pose-space Prediction Methods
We address the task of localizing objects from a given object class in an image. The image is represented as a collection of “visual words” at interest points. The generative template of features (GTF) model defines a distribution over visual words and their spatial locations for each part of the object (Sudderth et al., 2005; Fergus et al., 2005). We show how to derive pose-space prediction me...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملObject Category Recognition Using Generative Template Boosting
In this paper, we present a framework for object categorization via sketch graphs, structures that incorporate shape and structure information. In this framework, we integrate the learnable And-Or graph model, a hierarchical structure that combines the reconfigurability of a stochastic context free grammar(SCFG) with the constraints of a Markov random field(MRF), and we sample object configurat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 113 شماره
صفحات -
تاریخ انتشار 2009